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The exo-substituted h4-cyclopentadiene CpCo(I) complexes were found to be the actual catalyst for the
cobaltocene-catalyzed ATRP. Cobaltocene is just a precatalyst, which can be converted to the catalyst by
the reaction with halide initiator. As a new kind of ATRP catalyst, the exo-substituted h4-cyclopentadiene
CpCo(I) complexes can catalyze the living radical polymerization of MMA, styrene, and the block
copolymerization of MMA with styrene.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Transition-metal-mediated living radical polymerization is one
of the most important advances in polymer science in the 1990s. It
is now a versatile tool to precisely synthesize well-defined
(co)polymer with well controlled compositions, functionalities,
topologies, even hybrids, new nanostructured materials, bio-
conjugates [1–9]. Among these approaches, ATRP is the most
attractive one. Since Matyjaszewski and Sawamoto firstly reported
two different catalyst systems independently in 1995 [10,11],
a number of different transition metal complexes have been
successfully applied to living radical polymerization, including
systems based on Cu [12], Ru [13], Fe [14], Ni [15], Pd [16], Rh [17],
Re [18], Mo [19], Co [20,21]. The transition metal complexes have
critical effects in ATRP. It can induce reversible activation of
a dormant carbon–halogen bond at a terminal via a single-electron
transfer redox reaction to establish rapid dynamic equilibrium to
keep low radical concentration and restrict irreversible termination
(Scheme 1) [2,3].

A few years ago, our group reported the cobaltocene-catalyzed
ATRP of MMA [20a]. Cobaltocene is a 19-electron complex, which
can be easily oxidized. Sheats et al. [22,23] have exactly investi-
gated the reactions between cobaltocene and organic halides in the
ratio of 2:1 and obtained equal molar amounts of cobaltocenium
halide and exo-substituted h4-cyclopentadiene CpCo(I) complex.
He has found a number of evidences to support that the reaction
.
.

All rights reserved.
proceeded through a single-electron transfer process and proposed
a possible mechanism for the reaction. The first step is generally
thought to be that an electron transfers from cobaltocene to organic
halide to form the 18-electron cobaltocenium and the radical anion
RX��, which then releases the radical R� and X�. In the second step,
the radical R� reacts with another equivalent of cobaltocene to give
the exo-substituted h4-cyclopentadiene CpCo(I) complex. In our
previous report [20a], we suggested a possible mechanism for the
ATRP catalyzed by cobaltocene as described in Scheme 2. According
to this mechanism, the polymerization is controlled by the
reversible activation of halide initiator by cobaltocene, and the
second reaction is a side reaction, which will irreversibly terminate
the polymerization. However, Poli pointed out in his recent review
article that the actual catalyst may be the CpCo(I) or CpCo(II)
complex, owing to the low efficiency factor (f¼ 0.25) [24]. To
further explore the mechanism of cobaltocene-catalyzed ATRP,
a systematic study was done in this paper, and the exo-substituted
h4-cyclopentadiene CpCo(I) complex was found to be the actual
catalyst for the cobaltocene-catalyzed ATRP. The exo-substituted
h4-cyclopentadiene CpCo(I) complexes were also developed as
a new kind of ATRP catalysts.
2. Experimental

2.1. General considerations

Methyl methacrylate (MMA) and styrene were dried over
calcium hydride, distilled twice under reduced pressure, degassed
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Scheme 2. The model reaction to generate the cobalt(I) complex in situ to catalyze the
ATRP of MMA.
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Fig. 2. Dependence of Mn and PDI on conversion at 80 �C with [MMA]0:[Cp2Co]0:
[EBiB]0:[EBiB]0 (initiator)¼ 200:2:1:1.
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Scheme 1. ATRP of MMA with transition metal complexes.
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and stored under argon at �15 �C. Cobaltocene and ethyl 2-bro-
moisobutyrate (EBiB) were prepared according to the literature
[25,26]. Toluene was distilled from appropriate drying agents and
deoxygenated before use.

2.2. Preparation of the CpCo(I)[h4-C5H5(Me2CCO2Et)] (1)

Cobaltocene (1.021 g, 5.4 mmol) and ethyl 2-bromoisobutyrate
(EBiB) (0.505 g, 2.6 mmol) were dissolved in 25 mL of toluene and
stirred at 40 �C for 20 h. Then the mixture was filtered through
a 3 cm plug of CuCl. After removal of solvent under reduced pres-
sure, 0.752 g (94%) of complex 1 was obtained as a red oil. 1H NMR
(CDCl3): d 5.14 (br s, 2H diene-H), 4.71 (br s, 5H, C5H5), 4.02 (br s, 2H,
CH2CH3), 2.97 (br s, 1H, Allyl-H), 2.69 (br s, 2H diene-H), 1.22 (br s,
3H, CH2CH3), 0.68 (s, 6H, CH3) ppm. 13C NMR (CDCl3): d 176.3, 78.9,
75.3, 59.7, 59.1,47.5, 41.0, 21.2, 14.2 ppm. MS (ESI): m/z 304.2 (Mþ),
303.3 (Mþ� 1). IR (KBr): nco 1721(s) cm�1. Anal. Calcd for
C16H21CoO2: C, 63.16; H, 6.96. Found: C, 62.86; H, 6.90.

2.3. Preparation of the CpCo(I)[h4-C5H5(Me2CCN)] (2)

Complex 2 was prepared according to the literature [27]. 1H
NMR (CDCl3): d 5.27 (br s, 2H diene-H), 4.75 (br s, 5H, C5H5), 2.82 (br
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Fig. 1. Time dependence of ln([M]0/[M]) at 80 �C with [MMA]0:[Cp2Co]0:[EBiB]0:
[EBiB]0 (initiator)¼ 200:2:1:1.
s, 1H, Allyl-H), 2.79 (br s, 2H diene-H), 0.87 (s, 6H, CH3) ppm. 13C
NMR (CDCl3): d 123.9, 78.2, 74.7, 57.5, 38.2, 36.8, 21.8 ppm. MS (ESI):
m/z 257.06 (Mþ), 256.4 (Mþ� 1). IR (KBr): nC^N 2227(s) cm�1. Anal.
Calcd for C14H16CoN: C, 65.37; H, 6.27; N, 5.45. Found: C, 65.08; H,
6.53; N, 5.35.
2.4. Polymerization

All manipulations were conducted under argon with standard
Schlenk techniques. Polymerizations were carried out in 50 mL
Schlenk flasks fitted with a Teflon stopcock. A typical polymeri-
zation procedure of MMA was as follows. Water and oxygen were
removed from the flask with a magnetic bar by fire and applying
high vacuum and back filling with argon (three times). The
catalyst (3�10�4 mol) was added, and oxygen was removed
again. MMA (6.007 g, 6.0�10�2 mol), toluene (5 mL), and EBiB
(58 mg, 3�10�4 mol) were added via gastight degassed syringe
under the protection of argon. The flask was sealed with Teflon
stopcock by three freeze–pump–thaw cycles to remove oxygen,
and then immersed in an oil bath at 80 �C. At timed intervals,
samples were withdrawn via a degassed syringe, diluted with
THF, added to mass methanol, and the white polymers were
obtained, dried under vacuum. The conversions were determined
by gravity.
2.5. Characterizations

The number- and weight-average molecular weight and poly-
dispersities of polystyrene were measured by GPC (Waters 510
R

Co2 [Cp2Co] + +[Cp2Co]+ Br-Me2CCO2Et

Br

2 [Cp2Co] +

R

Co2-N2

R= Me2CCO2Et (1)

R= Me2CCN (2)

C N N CNC CN
Me2

Me2

(EBiB)

(AIBN)

Scheme 3. Preparation of complexes 1 and 2.
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Fig. 3. Time dependence of ln([M]0/[M]) at 80 �C with [MMA]0:[1]0:[EBiB]0¼ 200:1:1.
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Fig. 5. Time dependence of ln([M]0/[M]) at 80 �C with [St]0:[1]0:[EBiB]0¼ 200:1:1.
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liquid chromatograph connected with four styragel GPC columns
(guard, 103 Å, 104 Å, 105 Å), and waters 410 differential refracto-
meter. The eluent was THF at a flow rate of 1 mL min�1, and the
column temperature was 35 �C). Calibration was made with stan-
dard samples of polystyrene. 1H and 13C NMR spectra were recor-
ded on a VARIAN AS-400 spectrometer in CDCl3, using
tetramethylsilane as the internal standard. IR spectra were recor-
ded as KBr disks on a Nicolet 380 FT-IR spectrometer. Mass spectra
were recorded on a TRACE DSQ instrument. Elemental analyses
were performed on a Perkin–Elmer 240C analyzer.

2.6. Block copolymerization

The general procedure was conducted as described above. The
reaction was carried out at 80 �C with MMA. After 7 h the MMA was
almost consumed and an equal St was added under argon. After
24 h, the copolymer was obtained without further purification.

3. Results and discussion

To further explore the mechanism of cobaltocene-catalyzed
ATRP, the reaction of MMA in the presence of cobaltocene and EBiB
was carried out in toluene at 80 �C under argon atmosphere with
[MMA]0:[Cp2Co]0:[EBiB]0¼ 200:2:1. After 16 h, no polymer was
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Fig. 4. Dependence of Mn and PDI on conversion at 80 �C with
[MMA]0:[1]0:[EBiB]0¼ 200:1:1.
obtained, indicating that the initiator EBiB was fully consumed by
cobaltocene. But when another 1 equiv of EBiB was added, the
polymerization was initiated. The plot of ln([M]0/[M]) vs. time
(Fig. 1) was linear with a pseudo-first order rate constant (kobs) of
0.33 h�1, indicating that the radical concentration was constant.
The molecular weight (Mn) increased linearly with conversion and
the polydispersities were very low (w1.1) (Fig. 2). The efficiency
factor (f) of total EBiB was 0.24. In fact, half of EBiB was consumed
by cobaltocene, the effective f should be 0.48. These results indi-
cated that the exo-substituted h4-cyclopentadiene CpCo(I) complex
should be the actual catalyst for the cobaltocene-catalyzed ATRP
and the reaction of cobaltocene with RX was irreversible. However,
there is another possibility, as Poli pointed [24], the CpCo(II)
complex, formed by reaction of the exo-substituted h4-cyclo-
pentadiene CpCo(I) complex with halide initiator, may also be the
actual catalyst. Then, the polymerization of MMA under the same
condition with [MMA]0:[CpCo(I)]0:[EBiB]0¼ 200:2:1 was carried
out and polymer was formed (40% conversion was achieved in 4 h).
This result excluded the possibility of the CpCo(II) complex as the
actual catalyst. Besides, the dimer (Cp*CoBr)2 was also synthesized
[28] and it could not catalyze the polymerization of MMA under the
above condition.

To further support this mechanism, two exo-substituted h4-
cyclopentadiene CpCo(I) complexes CpCo(I)[h4-C5H5(Me2CCO2Et)]
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Fig. 6. Dependence of Mn and PDI on conversion at 80 �C with [St]0:[1]0:
[EBiB]0¼ 200:1:1.
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Fig. 7. GPC curves of PMMABr and PMMA-b-PSt.
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Fig. 9. Time dependence of ln([M]0/[M]) at 80 �C with [MMA]0:[2]0:[EBiB]0¼ 200:1:1.
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(1) and CpCo(I)[h4-C5H5(Me2CCN)] (2) were synthesized by the
reactions of cobaltocene with EBiB and AIBN [27], respectively
(Scheme 3), fully characterized by 1H NMR, 13C NMR, ESI-MS,
elemental analysis, and applied successfully to the ATPP.

The polymerization of MMA catalyzed by complex 1 with
1 equiv of EBiB as initiator was carried out in toluene at 80 �C
([MMA]0:[1]0:[EBiB]0¼ 200:1:1). The plot of ln([M]0/[M]) vs. time
(Fig. 3) was linear with a pseudo-first order rate constant (kobs) of
0.27 h�1, which is slightly smaller than that for the in situ poly-
merization from cobaltocene (0.33 h�1). The molecular weight (Mn)
increased linearly with conversion and the polydispersities were
quite low (w1.1) (Fig. 4). The efficiency factor was 0.59, a little
higher than that for the Cp2Co/EBiB system.

Complex 1 was also applied to the ATRP of styrene with
[St]0:[1]0:[EBiB]0¼ 200:1:1. The plot of ln([M]0/[M]) vs. time (Fig. 5)
was linear with a pseudo-first order rate constant (kobs) of 0.08 h�1,
which is much smaller than that for MMA polymerization. The
molecular weight (Mn) also increased linearly with conversion, but
the polydispersities were slightly broader (w1.5) (Fig. 6). The effi-
ciency factor was 0.73.

To examine the living nature of the polymerization catalyzed by
the h4-cyclopentadiene CpCo(I) complex, the block copolymer
PMMA-b-PSt was synthesized successfully through the ATRP
8 7 6 5 4 3 2 1 0
ppm

PMMABr

PMMA-b-PSt

Fig. 8. The 1H NMR spectra of PMMABr and PMMA-b-PSt.
catalyzed by complex 1. Fig. 7 shows that the Mn increased from
28,500 to 41,400, while the polydispersities increased from 1.12 to
1.26. The 1H NMR spectrum of the copolymer proved that the block
copolymer was synthesized and the polymer end was living (Fig. 8).

Complex 2 was also applied successfully for the ATRP of MMA
and styrene with 1 equiv of EBiB as initiator ([Monomer]0:[2]0:
[EBiB]0¼ 200:1:1). The plots of ln([M]0/[M]) vs. time (Figs. 9 and
10) were linear with a pseudo-first order rate constant (kobs) of
0.21 and 0.068 h�1, respectively, but both with a retardation for
about 1.5 h. The molecular weight (Mn) increased linearly with
conversion (Figs. 11 and 12). The polydispersities were quite low
(w1.1) for PMMA but slightly broader (w1.5) for polystyrene.
The efficiency factors were 0.68 and 0.78, respectively. The
y-intercepts were ca. 20,000 and 3000, respectively, which may
be attributed to the different property of the cyano group from
the ester group.

All these results have proved that the exo-substituted h4-
cyclopentadiene CpCo(I) complex must be the actual catalyst for
the cobaltocene-catalyzed ATRP, and the reaction of cobaltocene
with organic halide is irreversible. So the mechanism of cobalto-
cene-catalyzed ATRP may follow as described in Scheme 4. The
polymerization was controlled by the reversible activation of halide
initiator by the exo-substituted h4-cyclopentadiene CpCo(I)
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Fig. 10. Time dependence of ln([M]0/[M]) at 80 �C with [St]0:[2]0:[EBiB]0¼ 200:1:1.
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Fig. 11. Dependence of Mn and PDI on conversion at 80 �C with [MMA]0:[2]0:
[EBiB]0¼ 200:1:1.
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Fig. 12. Dependence of Mn and PDI on conversion at 80 �C with [St]0:[2]0:
[EBiB]0¼ 200:1:1.
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complex. Cobaltocene is just a precatalyst, which can be converted
to the actual catalyst by reaction with halide initiator. However,
there are still some problems. Although the efficiency factors of the
initiator were much improved by using the exo-substituted h4-
cyclopentadiene CpCo(I) complexes instead of cobaltocene, the
efficiency factors are still not very high. The system may be more
complicated than those as suggested. Some side reactions [such as
the oxidation addition of CpCo(I) with alkyl halide initiator] may
exist and reduce the initiator efficiency. The more clear and detailed
mechanism needs further investigation.
+M kp+ RX

R

Co

R

Co + R.

R

Co X

2 [Cp2Co]  + RX +[Cp2Co]+ X-

Scheme 4. The mechanism of cobaltocene-catalyzed ATRP.
4. Conclusions

In conclusion, we have demonstrated that the exo-substituted
h4-cyclopentadiene CpCo(I) complex is the actual catalyst for the
cobaltocene-catalyzed ATRP. Cobaltocene is just a precatalyst,
which can be converted to the actual catalyst by reaction with
halide initiator. As a new kind of ATRP catalysts, the exo-substituted
h4-cyclopentadiene CpCo(I) complexes can catalyze the living
radical polymerization of MMA, styrene, and the block copoly-
merization of MMA with styrene. Cobaltocene is a good precatalyst
due to the high performance and easy availability.
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